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ON THE NUMERICAL INTEGRATION OF WALSH SERIES 
BY NUMBER-THEORETIC METHODS 

GERHARD LARCHER AND CLAUDIA TRAUNFELLNER 

ABSTRACT. In analogy to the theory of good lattice points for the numerical 
integration of rapidly converging Fourier series, a theory for the fast numerical 
integration of Walsh series is developed. The basis for this theory is provided 
by a class of very well-distributed point sets in the s-dimensional unit cube, the 
so-called (t, m, s)-nets. 

1. INTRODUCTION 

One of the main branches in the theory of numerical integration by number- 
theoretic methods is the theory of good lattice points. Good lattice point meth- 
ods were introduced independently by Hlawka [4] and Korobov [6], and are an 
excellent tool for the numerical integration of functions which are representable 
by, in a certain sense, rapidly converging Fourier series. The basic principle is 
the following: 

Let f: RI R be periodic with period one in each variable. Let 

f(x) := E c(h)e2,i(x,h) 
h 

h=(h, h5)EZs 

for all x E Rs5, and for an a > 1 and a c > 0 let 

jc(h)j < c(h, ... h5)-' with hi := max(1, Ihil), 

for all h. We then say that f belongs to the class Esa>(c). Under these assump- 
tions we have: 

There is a constant c' = c'(c, a , s) such that for every N E N there exists a 

"good lattice point" g := (gi, ..., g5) E Z5 so that 

IJ f (x) d x -- f ( g < C 

(See [4, 7, 12].) 

For the case N = p prime, the above result was improved by Bahvalov [1]. 
In this case one gets an error estimate of the form 

-, (log N)a>(s- l) 
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For composite N the best result known until quite recently was established by 
Niederreiter [17] with an error estimate of the form 

c" (log N) a's - 1) +IK N (a!- 1)(s 

where q is Euler's totient function. 
The method of good lattice points has the great advantage that the smooth- 

ness of the function f is highly beneficial, and it gives, especially in higher 
dimension, essentially better results than classical integration methods such as 
those based on a uniform lattice. Thus, for example, if we take the point set 

(ki k5) ki =l,...,n, i=l,5...,s, N=ns 

for the numerical integration, then we only get an error estimate of the form 
cN /s. Increasing the dimension s, therefore, contributes in a much more 
essential way to an increase in the integration error. 

However, especially for dimension s > 3 it turned out to be a challenge to 
give fast algorithms for finding good lattice points g to a given modulus N. 
In dimension s = 2, with the help of the continued fraction algorithm, it is 
possible to give effective methods for constructing good lattice points. (See, for 
example, [7] and [13].) For dimensions s > 3 one essentially has to rely on 
tabulated values. 

In recent years, in connection with image and signal processing, the impor- 
tance of Walsh series, respectively of functions which are representable by Walsh 
series, has steadily grown. (See for example [10].) First attempts in the direction 
of giving good methods for the numerical integration of such Walsh series were 
already made by Sobol. (See [19], [20]; he indeed works with Haar functions.) 
But only by a systematic development of the theory of nets by Niederreiter (such 
nets will in the following play the role of the good lattice point sequences), which 
has turned out to be enormously fruitful in the theory of uniform distribution 
(see [14] and [1 5]), it became possible, first: 

to give results analogous to those in the theory of good lattice points, now 
concerning the integration of Walsh series (this is the task of ?2 of the paper), 
and furthermore: 

to even give, with regard to such things like effectivity, constructivity of 
methods, and quality of the error estimates, more convincing results than in the 
classical good lattice point theory (?3). 

In the last section the methods developed will be applied to concrete exam- 
ples. 

2. NUMERICAL INTEGRATION OF WALSH SERIES 

Definition. Let b > 2 be an integer and w := e2,ilb. The Rademacher func- 
tions to base b are defined by 

b0(X) = Wk fork/b<x<(k+l)/b, k=O, ..., b - 1, 
and for n > 0 by 

b0n(X + 1) := b0n(X) := bO(bnx). 

Definition. The Walsh functions to base b are defined by 

bwalo(x) = 1 
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andif n =albnl+ .. +ambnm with 0<ai <b and n1 >n2>*.. by 

bWal (X =Oa,n (X) * 
O 

*ba- (X). bwaln (X) b b4n, x ... bn 

For dimension s > 2 and k1, ...,ks > 0 we define 

bwalkl,..., k5(X1, , X) = bwalk, (XI) * * * bwalk5 (xs). 

The system of functions W = {bwalk1,..., kski > 0, i = 1, ..., s}, is orthonor- 
mal and complete in L2([0, 1)s). (See [2] and [10].) 

Definition. For given base b > 2 and for a > 1 and c > 0 let bEs(C) be the 
class of all f: Rs -* 

R with 
00 

f(x) = E f(k1, ...,ks)bwalkj,.ks(X) 
.l .,k5=O 

for all x E [O, 1)s and with lf(k1, ..., ks)I < c(ki ks)-a for all k 

(k1, , ks). 

(In the following we write wal instead of bwal, and Es instead of bEs if 
it is clear what base b is meant.) 

Definition. For an integer b > 2 an elementary interval to base b is defined to 
be an interval of the form 

J7[a(i)b-d , (a(') + 1)b-dl) 

i=l 

with integers di, a(i) > 0 and a(i) < bd for 1 < i < s. 

Definition. Let b > 2 and 0 < t < m be integers. A (t, m, s)-net to base b 
is a set of bm points in [O, 1)s having the property that in every elementary 
interval to base b of volume bt-m there are exactly bt points of the set. 

(For the last two definitions see [14].) 
First we show: 

Theorem 1. For a given base b > 2, let f E E(c), x1,..., XN E [O, 1)s, and 

RN(f) := f(x) dx k Z f(Xk) 

(a) If N = bsn and x1, ..., XN is the uniform lattice, then 

RN(f) <c ((I + (a - )< c'(s, b, a, c)N s 

(4 is Riemann's zeta-function.) 
(b) If x1, ..., XN isa (t, m, s)-net to base b, then 

RN(f) < cll(s , b,a, c)b (a- )t (log N)s 
I 

(An estimate for c" can easily be given by the proof of (b).) 
For the proof we start with four easy lemmas. 
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Lemma 1. We have RN (f) = I 
I Ek$&O f(k) * SN(k) I with SN(k) = N 

IJ walk(xj) 
Proof. Inserting the absolutely converging Walsh series in the definition of 
RN(f) gives the result. n 

Lemma 2. For f e ta(c) we have 

RN(f ) < -N 
RI ... ks)a' 

Proof. Follows immediately from Lemma 1. 

Lemma 3. (a) If k = abn + k', then walk(l/bn) = walk (l/bn) for all 1 E N. 
(b) If k = bk' + r with 0 < r < b, then walk(x) = walk,(bx)Wrk(x) with 

k(x)/b < x < (k(x) + 1)/b. 
(c) 

bn-l 11 is5 bns ifbnjkijforali =1, ..., s 
Z walk kbn ''bnJ = 0 otherwise. 

Proof. Assertions (a) and (b) immediately follow from the definition of Walsh 
functions, and (c) follows from 

bn-l1 bn-l1 

E walk(l/b n) = E walk,(l/bn-i)wrk(l/bn) 
1=0 1=0 

b-i bn-l-1 

=Ewrk E walk'(l/bn 1) = 0 if r$ 0. 
k=0 1=0 

(Here we put k = bk' + r as in (b).) fl 

Lemma 4. Let N = bm and let xn, n = 1, ... ., N, be a (t, m, s)-net to base b. 
Then we have: if k:= (k1, ... , ks) 7? 0 is such that there exist integers di > 0 
with ki < bd for i = 1 , ... ,s and d, + - . + ds = m - t, then SN(k) = 0. 
Proof. Let d1, ... , ds with the above property be given. We divide [O, 1)s in 
bm-t intervals of the form 

S 

E = j[aib d, (ai + 1)b d) , ai = , ... , bdi-1. 
i=1 

Each of these intervals has volume bt-m , and therefore in each of these intervals 
there are exactly bt points of the net. The function walk, (x) is constant on 
every interval of the form 

[aib d, (ai + 1)b d,), 

and therefore walkl,...,k5 is constant on each of the above intervals E. There- 
fore, we have 

bd _1 

SN(k) = bt E walk, (a,/bdl) . . . walks (as/bds) = 0 , 
aw, ... ,as=O 

which follows from Lemma 3(c). [ 
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Proof of Theorem 1. (a) From Lemma 2 and Lemma 3(c) we have 
s , 0.0 

RN(f) < Z (r ) Z b- bn(l lr) 
Nr= lr =I 

rcZ (s ) b-nra4'r(a) = c I + C(a) - 

(b) From Lemma 2 and Lemma 4 we have 

s oo r bdU+-1 \ 

RN(f) < C () Oku 

. drO 

r= 1 di, ........, dr=O .u= 1 ku=bdu 
dl+d>-+dr>m-t-r 

From Ek?= k-a < ca>A -a we have 
so 00 

RN(f) < C E 
Car 

E b( I-a)(dl+ -+dr) 

r=1 =di,-., ddr.=0 
- dl+--+dr>m-t-r 

s ,. 0 o o 

? C E S) 
Car 

E W-a)i 

r=1 i=m-t-r+1 dl,...,dr=0 
dl + *+dr=i 

s oo0 

<CN a(Car) E ir-Z b(la-()i 

r=1 i=m-t-r+1 

? cN' -ab(al-1)tb I-al ()crOa(-1) (M t r- I is-' P-a)i 

(logN)a 

< c"(s, b, a, c)b(a- 1)t (10g N)sa 1 

Remark 1. The estimate in (a) is, apart from the constant c, best possible since 
if we take 

00 

f(x) : k- walkl, , ..., o. (x) 

ki=1 

then 
00 

nlan as( 
RN(f) = E b- l b'S - Na/sC(a) 

Remark 2. If a - 1 > a/s, that is, a > s(s - 1), then with nets of any kind 
we get a better error estimate than for the uniform lattice. Of course, there 
remains the question of possibly improving the estimate. We would like to 
have an estimate analogous to that in the theory of good lattice points, that is, 
with 

(log N) fi(s, a)(lgNsI 
RN (f) << ( g N)C instead of (logN) 1 

RN(f)? Na Na- I (here, ,B (s, a) denotes any exponent depending at most on s and a) if we 
take the optimal case of (0, m, s)-nets. 

But first we will show that such an improvement for arbitrary (0, m, s)-nets 
certainly is not possible: 
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Theorem 2. For every a > 1 there is a c, > 0 such that for all m E N there ex- 
ists a (0, m, 1)-net to base 2 and an f E E(1) such that RN(f) > c,N112 . 

For the proof we first need a lemma. 

Lemma 5. Let b ,k E N, b > 2 and k = bri br-l +**+bl1b+bo; let x - 

ci /b + c2/b2 + E [O, 1). Then 

walk (x) = w boCl +bl C2+ * *+br- 1 Cr 

Proof. We have 

r-I r-I 

walk(x) = ]7 ob (bQx) = ]7 Qob (Ci+l) Wbocj++brCr. O 

i=O i=O 

Proof of Theorem 2. We consider functions of the form 

2m+1 - 1 

f(x) = 2-(m+l)a Z ekwalk(x) with ek E {0, 1} 
k=2m 

(therefore, f E E(1)) and (O, m, 1)-nets to base 2 of the form 

am + +a,+ d(am, ... , a,) with certain d(am, ... , a,) E {0, 1}, 

X 2+ +21, 2m+1 

if n=am2m-l+...+a22+ai, n=O, 1, ..., 2m - 1. Then 

2m+1 - 1 1 

2a2(a+ )mRN(f) = E ek E (_l)d(alj.am)+ajbmij+-- +ambo 

k=2m a,,..., am=0 

for k=2m+bmI12m-I+ .+bo. Weconsider d asafunction d:{0, i}m1m 

{0, 1} . For given d, let fd Zekwalk(') with 

ek sgn ( , (l)d(alj,.am)+ajbm_i+.+ambO 

ka,, am =0 

So, 

2m+1 - 1 1 

2a2(a+l)mRN(fd) = Z E (_1)d(al,...,am)+alibm,+ +ambo 

k=2m al,...,am=O 

Then 

X = E 2a 2(a+ )mRN(fd) 
d 

- EZIZ (_l)d(al,...,am)+albm-l+ +ambo 

k d al,...,am=O 

1 ~~~~~~2m- 1 

= ZZsE ZE (-l)d(dl. 
dm) > 2. 2m (2 ) (2m-1-i) 

k d dl.dm=O i=O 
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Because of 

- 2M2+M(2I2M 2M(2M2'M(2M 2 
M (M-i)=M (E i + 2 ( EM i 

2 2 ( ) i=o ( ) 2 M( ) 

we have X > 22m- 1 2) and therefore there exists a d such that for the net 
defined by d and the function fd we have 

RN(fd ) > 2 -2m-1 (22 

m 
2-a 2- (a- )m 

By Stirling's formula we have 2-2M(2M) - 1/2M-1/2, and the result fol- 
lows. El 

So even with optimal nets, that is, with (0, m, s)-nets, the quality of the 
classical estimates cannot be obtained. But we will show in the following that if 
we restrict to a certain class of nets, we will be able to obtain, and in a certain 
sense even to improve, these estimates. Further, we will give some concrete, 
constructive methods for the generation of such special nets. 

3. INTEGRATION WITH DIGITAL NETS 

The following class of nets was introduced in a slightly more general form by 
Niederreiter in [14]. 

Definition. Let b > 2 be a given base. Let R {0, ... , b - 1 } be an arbitrary 

ring with zero element 0. Let Ci = ((')), k, = 1, ... m, i = 1,... ,s, be 
s given m x m-matrices over R. 

In the following we identify every integer n, 0 < n < b-m 1, n = ami-bm + 
**+ ao, ai E {0 ...,b - 1}, with the vector n: (ami,..., o)T and 
conversely. Then let 

Xn = bm (Ci * n), .. bm (Cs m n)) E [O,5 1)5 

In [14] conditions were given for the above point set to be a (t, m, s)-net to 
base b. 

For example, if b is a prime power, R = Fb the Galois field of order b, 
and c( , ..., cm) the row vectors of Ci, then xn, n = O, 1, ...,bm 1, is 
a (t, m, s)-net to base b if and only if for all d1, ..., ds E N U {0} with 

di + + ds = m - t we have: the set of vectors {cIi) 1 ..., di, i= 
1, ..., s} is linearly independent over Fb. (See [14, Theorem 6.10, Theorem 
6.14].) In the following we will call nets of this form digital nets. (See also [9] 
and [16].) 

The following result of Niederreiter gives concrete examples of such digital 
nets. (See [14, Theorem 6.2].) 

Let b > 2, b = q... qa , with pairwise relatively prime prime powers qi with 

q1 < < qu, m E N arbitrary, and s < q1 + 1. Let R be the direct product 
of the Fq, i = 1, ..., u. Then the following matrices Ci, i = 1, ..., s, 
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provide a (0, m, s)-net to base b: for every v, 1 < v < u, we choose s - I 
pairwise different elements ,B3(v) i = 1,..., s - 1, from Fqv . Let , 
(f(l),...,f3(u)) E R, 1 < i < s 1. Let Ci := (c%)) I < j < m O < r < 
m- 1. Let 

Cr) = O for I < i < s - 1 < i< m, < r < j- 1 

Cjr 
r r- 

)fij+ for I < i < s - 1,1< j < m, j - l< r < m - l 

jr) r,t -j for < j < m, O < r < m -1. 

Here, fB = I1 for all f, E R, and (5 is the Kronecker symbol. (In the following 
we will call these special digital nets "N-nets".) Simple examples of N-nets are 
the following: s= 2 b > 2: 

1~~~~~~~ 

0 

C'=d 1 C2L0 1 

This choice of the C, provides the so-called Hammersley sequence to base b, 
which is well known in uniform distribution. (See [8].) 

s = 3, b = 2: Cl like above, C3= C2 from above, and 

...... (m l) 

1 (2) (m- 1) 

C2 in F2. 

O m - ) 

Remark 3. In [14] it was shown that a necessary condition for the existence of 
a (0, m, s)-net to base b is that s < b + 1. On the other hand, the above 
construction proves the existence of digital (0, m, s)-nets to base b whenever 
b is a prime power with s < b + 1 . In the case when s > b + 1 there remains the 
question how small t can be such that a (t, m, s)-net to base b exists. Quite 
recently, intensive computer calculations were carried out to solve this question 
for base b = 2 and certain values of m and s, by Hansen, Mullen, and 
Niederreiter in [3]. So, for example, they gave concrete examples of (6, 20, 4)- 
digital nets or of (6, 10, 12)-digital nets. Currently, much research is being 
done in this direction. As a theoretical result, the following is known from [1 5]: 

For every dimension s and every base b there exists a constant T(s, b) such 
that for all m E N there exists a (t, m, s)-net to base b with t < T(s, b) . (For 
similar results for a special class of digital nets see [9].) 
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For digital nets and prime base b we now show the following improvement 
of the estimate of Theorem 1 (b): 

Theorem 3. For a given prime b > 2 let x1, , XN, N = bm, be a digital 
(t, m, s)-net to base b. Let f e E(c) to base b. Then 

RN(f) < c'(b, s, a, c)bta (lgN)s 
I 

Corollary 1. Let f E E(c) to prime base b. Takefor xl, .I. , XN the (0, m, s)- 
N-net to base b (N = bm). Then 

RN(f) < c'(b, s, a, c)-(lg N)s 

Corollary 2. For every dimension s, every prime base b > 2, and every m E N, 
there exists a digital net x1, ... , XN to base b (N = bm) such that 

RN(f) < c'(b, s, a, c)b(S, b)a (log N)s for all f E 4(c) 
Na 

Remark. In the statement and proof of Theorem 3 we limit ourselves to the case 
that b is a prime. Although numerical investigations suggest that the assertion 
of the theorem is probably true also for an arbitrary base, an attempt to prove 
the theorem in this general case causes technical problems. The main reason 
for these problems is that Lemma 6(b) is no longer true for arbitrary bases. 

In the following let Zb :{= 1, ... , b - 1}. Again, we use the identification 
n ++ ni in the natural way. Further, for m, n E N we denote by m E n the 
integer which corresponds to m' + n'. 

Lemma 6. Let b, m E N, b > 2 be fixed, Let k, 1, n E No be given with 
0 < n < bm, and let B = (bi1) be an m x m-matrix over Fb. Then: 

(a) For x E [0, 1) : walk (x) * wall (x) = walkE)1(X) . 
(b) walk(B * nl/bm) = walB*.k (mod bin) (n/btm), where B* =(bm+l-j,m+ -) 

Proof. (a) follows immediately from Lemma 5. 
(b) Let n = (am_,, ., OO)T; then 

m m 
B * n-= b ijam-i, . ... , bmiam-i) 

In the following we omit the bar - over elements of Fb . It will be clear in 
every case whether the digit or the corresponding element of the field is used. 

Then, by Lemma 5 with k = Cr Ibr-I + + co (without loss of generality 
we can assume r > m) we have 

m-1 m 

walk(B n/bnm) = wt witht= tE C b1+jam-1 
j=0 i=l 

m m-1 

= E am-i E bj+n, icj 
i=l j=O 
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and therefore 

wt = walq (n/brm) with q = bj+l,mCj, bj+, 1 cj0 
ij=o j=o 

=B*.k (mod bm). O 

Lemma 7. Let C1,..., C, be m x m-matrices over Fb = Zb with row vec- 
tors c(i), j = 1,...,m, i = 1, ..., s, and with the property that for all 

di, ...,d5 E N u {} with d, + + d5 = m - t the set {c(i), j = 1, ...,di, 
i = 1, ... ,s} is linearly independent over Fb. Let k1, ..., k5 be integers with 

0 < ki < bm, not all zero, and such that C* k, + + Cs*ks = (O, ... ,O)T. Then 
we have His=, max( 1 ki) > bm-t-s+ . (Ci* is defined like B* in Lemma 6(b).) 

Proof. Let ki = (k k('))T; then by insertion we get that the condi- 

tion C*kl + + Cs*ks = (O, ..., o)T is equivalent to 5i: Zs %i k:)cm-1 = 

(O, .. ., 0). Because of the condition for the Ci there must exist ti(l), * - *, ti(r) 
> 0 1 < i(l) < i(2) < < i(r) < s with ti(l) + + ti(r) > m - t + 1 and 

k1(',())l #0 for I = 1 r. Therefore, ki(l) > bti(l)-i and Hrl=s max(I, ki) > 

bM-t-s+1 . 

Proof of Theorem 3. (We follow the ideas of Hlawka in [4] in the classical 
case. See also [11] and [21].) With xn := (Cl * n/bm, ..., Cs * n/bm), n = 
0, ... , bm 1, we have 

s 00 

RN(f) < N Z (kil .kir)- 
r=1 1<-il< ..<ir<s kil, I ..kir=l 

N-1 
x , walki (Ci * n/btm) *.walkir (Cir n/b) 

n=O 

= -N ZZ (kiI kir)- Z walc* 1kj1 +..+c*kir (nlbm) 
r ij ki n=O r 

(here we use the notation k = k (mod bm) 

and the result of Lemma 6(b)) 

=CYY (kil kir) 
r ij kij 

C* kii +"+C*ikir=(0 .. 1o) 

Now we consider sums of the form of the inner sum in the last expression: 

00 

E (11 ** *Ir)-a ?, 
11. l r=I 

BilJ+ +Br[r=(O, . O)T 

where B1, ... , Br are such that from B1di + + Brdr = (O, ., O)T we get 
Hl=r max(di, 1) > bA for a certain A < m . (We denote this condition by (*).) 
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If there were nonnegative integers v, a , and ti < m, i = 1,..., r- 1, and 
nonnegative integers 1i, 4 ' with 

aibtl < l1 < (ai + I)bti for i = 1,..., r - 1 

and 
vbA tj tr-j1(r-I) < Ir lr < (v + ob 

such that (11i ... , Ir) # (11, ... , 1r) and such that 

Blll + +Brlr= Bil + +Br =r(O -,O)T 

then we would have (l ..., 4r) $ (PI, ..., ir), and with 

Li :=l li < bt, for i =1, ..., r - 1, 

Lr I E lr < bAt1 tr-i(ri) 

we would have a further solution of B1 LI + + BrLr = (O, ... , 0)T for which 

(Li, ..., Lr) $ (0 ... , 0) and where Hr=l max(1, Li) < bA-(r-), which is a 

contradiction. We denote this fact by (**). 

So we have 

bm-1 

11.@@lr=i 

Bjl1+---+Brlr=(0,...,)T 
r oo oo 

+ (11 * **/t_llt+l 
.. 

* r)a 
1 -a 

Bj1j+-+Brlr=(0O-- )0)T 

=:Xi +X2. 

Now because of (*): 

m-i b-i (al+l)btl m-i b-i (ar..+i)btr-1 

?1< 
a .. j 

1* r- 
a 

tj=O a1=1 11=a1bt, tr- I=0 ar-1= Ilr I _=ar- Ibtr-I 

oo (v+l)bAtl -" tr-1-(r-1)__ 

x 
-a 

I 

v=I lr=vb A-tj- '-tr-1-(r-1) 

(where summation is over all 11, ... , r with Bl i + + Brr = (O, ... , 0)T) 

and this, because of (**), is at most 

m-i b-i m-- b-i 

1:1 (a, bt,)-a ... 1: 
1 (ar_lbtr- I)- 

tj=O a1=1 tr-1=?ar 1=1 

x E(vbA-tj- '-tr-j-(r-I))-a 
v=l 

<(r-b)a _ r-1r 
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For X2 we have (by taking in (**) tl = t2 = = t,-I = 0 and because of 
A < m) 

00 00 

22 < r E (1 ..Ir- I) a: (v bA-(r-1))-a 
11 l, I-1=I v=l 

< rb(r-1) 1 (C(,))r 
bAa 

Altogether, with A = m - t - s + 1, we obtain 
S /s (log N)s bta 

RN(f) ? C r) (El +Z2) < c'(b, s, a, c)( Na b 

For nets with t = 0 we thus have a maximal integration error of the form 
(log N)s- /Na. We will now show that this is the best possible result for the 
numerical integration of Er-functions in any case. 

Theorem 4. For all b > 2, c > 0, a > 1, s E N there exist constants 
c'(c, a, s, b) >0 such that: For all N and every point set Xk, k = 1, ... , N, 
in [O, 1)s, there is a f E E-c with f(xk) = O for k = 1, ..., N and 

f f(x) dx > c' (log N)sI 
J[,)S Na 

Remark. An analog to this theorem for the class Esa was shown by Sarygin [18]. 
(See also [5].) 

Proof of Theorem 4. Let t be such that bt-l < N < bt. We add bt - N - 1 
points to the initial point set and denote the new set by xI, ..., Xbt -. For 
integer-valued vectors r := (ri, ... , rs), r, + +rs = t, ri > 0, we consider the 
set M(r) of all integer-valued vectors (ml, ... , ms), mi > 0, with mi < bri 

for all i = 1, ..., s. M(r) has bt elements. Therefore, the linear system 

E cr(m) walm(xk) = 0 k = 1, ...,bt 1, 
mEM(r) 

for every r has a nontrivial solution cr(m), m E M(r). Let Icr(m'(r))l 
maxmEM(r) Icr(m)I, m"(r) the unique element in M(r) with m'(r) e m"(r) = 0, 
and 

walm",(r) (x) 
Wr(X) cr (m'(r)) bat cr(m)walm(x). 

mEM(r) 

We have Wr $ 0. Let 

f(x) := cC I Wr(x) with C' := sup ya (I lo- g) 
S 

C' < x 
C/ ~~~~O?y?l \ logyb 

We show f E E- (c): For given mi, the term walm occurs in Wr if and only 
if there exists an m E M(r) with m @ m"(r) = mn-. This is possible only if 
m E M(r). In this case there exists exactly one such m. Therefore, for the mith 
Walsh coefficient f(mi) of f we have 

()I < c,b-at 1. 
r 

MiEM(r) 
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From m E M(r) we have ri > b log -m, i = 1, ... , s, and therefore 

blogri < rj = t-rl-** -r_l-rj+l-* *-rs < blog ( ) 

m :(in, ...( , ms) and mi := max(1, mi)). Therefore, 

If(fmi)?CC ( b ) (blog m + 

c l bat*Ml...ns ** S 

So, f EE (c), f(xk) = O, k = 1, ..., N, and 

J[O) f(x) dx = cc b- 
z Cm walmII(r)em(x) dx 

ly 1~~~~1 r [0, 1sMEM(r) r(m'(r)) 

=C Ib-E 1 dx = c!Ib- 1 

rl +- * +rs=t 

> Cl,(log N)s1 1 

Digital nets, for example digital N-nets, therefore provide best possible, and, 
as will be shown in the concluding section, good programmable methods for the 
numerical integration of Walsh series. 

4. EXAMPLES 

Example 1. Let e = O.ele2e3..., ei E {O, 1}, i = 1, 2, ..., be a fixed 
given 0, 1-signal, considered as a real number in [O, 1] represented to base 
2. The function fe: [O, 1]2 __ [O, 1] bundles two incoming 0, 1-signals x = 

O.xIx2 ... and Y = O1YY2 ... and the given e to the new signal fe(x ) y) 
O.xlyle1x2y2e2 ... represented again as a real number to base 2. It is easy to 
show that 

00 

fe(X Y) = 1 + 2-31-1(_)[2e]+l 

1=1 

+ Z((-231+ 1) [2'x] + (-2-31)(_ 1)[2'y] 

1=1 

and therefore, fe E E3(2). For concrete values of e we get, for example, 

)2 fo = 3/7 = 0.428571, / 
1)22 

= 31/56 = 0.553571428. 

Numerical integration with the uniform lattice, respectively with the Ham- 
mersley sequence (digital N-net) to base 2 (N points in each case) gives the 
following results: 
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TABLE 1. Results for e = 0 
m N unif. lattice RN Hammersley seq. RN 

4 16 0.421875 10-3 0.428466796875 10-4 

6 64 0.427734375 10-3 0.428569793701172 10-5 
8 256 0.428466796875 10-4 0.428571403026581 10-8 

10 1024 0.4285583496093375 10-5 0.42857142817229 10-10 
12 4096 0.428569793701172 10-5 0.428571428565192 10-11 
14 16384 0.428571224212646 10-7 0.428571428571331 10-13 

TABLE 2. Results for e = 1/2 

m N unif. lattice RN Hammersley seq. RN 

6 64 0.552734375 10-3 0.553569793701172 10-5 
10 1024 0.553558349609375 10-5 0.55357142817229 10-10 
14 16384 0.553571224212646 10-7 0.553571428571331 10-13 

Example 2. Let f: [0, 1)3 -* 1R be given by f(x, y, z) = g(x)g(y)g(z) with 
g: [0, 1) -* R, g(x) = 2-1-1 for 2-1-1 < x < 2-', 1 = 0, 1, As is easily 
checked, we have 

g(x) = 1 (2- 2-2k I wali(x)) and jg(x)d 3. 

Therefore, f e E3 (1) and J[O]3 3f(x) dx = 2 07 = NUmeriCa integration 
with the uniform lattice, respectively with the three-dimensional N-net, given 
as an example in ?3, gives: 

TABLE 3 
m N unif. lattice RN N-net RN 

6 64 0.030517578125 10-2 0.036239624023438 10-3 
9 512 0.035327911376953 10-3 0.036406806945801 10-4 

12 4096 0.036604702472687 10-4 0.037025457248092 10-5 

15 32768 0.036928636021912 10-4 0.037037021918877 10-8 
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